
N95- 23716

A Toolbox and Record for Scientific Models

Thomas Ellman

Department of Computer Science, Hill Center for Mathematical Sciences

Rutgers University, Piscataway, New Jersey, 08855, USA

Phone: (908) 445-4184, FAX: (908) 445-5530
Email: ellman@cs.rutgers.edu

Key Words and Phrases

Artificial intelligence, scientific computation, auto-

mated software design, knowledge representation, ap-

proximation.

Difficulties of Scientific Programming

Computational science presents a host of challenges
for the field of knowledge-based software design. Sci-

entific computation models are difficult to construct.
Models constructed by one scientist are easily mis-

applied by other scientists to problems for which

they are not well-suited. Finally, models constructed

by one scientist are difficult for others to modify or
extend to handle new types of problems. Existing

knowledge-based scientific software design tools, such

as SIGMA (Keller & Rimon 1992), provide only lim-
ited means of overcoming these difficulties. For ex-

ample, SIGMA facilitates model construction by pro-

viding scientists with high-level data-flow language

for expressing models in domain-specific terms. Al-

though SIGMA represents an advance over conven-
tional methods of scientific programming, it supports

only certain aspects of the model development pro-
cess. In particular, SIGMA focuses mainly on au-

tomating the process of assembling equations and

compiling them into an executable program. Con-
struction of scientific models actually involves nmeh

more than the mechanics of building a single compu-
tational model. In the course of developing a model,

a scientist will often test a candidate model against

experimental data or against a priori expectations.
Test results often lead to revisions of the model and a

consequent need for additional testing. During a sin-

gle model development session, a scientist typically
examines a whole series of alternative models, each

using different simplifying assumptions or modeling
techniques. A useful scientific software design tool

must support these aspects of the model development

process as well. In particular, it should propose and
carry out tests of candidate models. It should analyze
test results and identify models and parts of mod-

els that must be changed. It should determine what

types of changes can potentially cure a given nega-
tive test result. It should organize candidate models,
test data and test results into a coherent record of

the development process. Finally, it should exploit

the development record for two purposes: (1) auto-

matically determining the applicability of a scientific
model to a given problem; (2) supporting revision of
a scientific model to handle a new type of problem.

Existing knowledge-based software design tools must
be extended in order to provide these facilities.

An Artificial Intelligence Approach

We are attacking this problem using two related ideas:

First, we are building a "Model Development Tool-

box". The toolbox will support a set of generic model

development steps that are taken by most scientists
in the course of developing scientific computational

models: Examples of such generic model building

steps include: (1) mapping equations onto physical

situations; (2) fitting models against experimental

data; (3) testing models against experimental data;

(4) testing applicability of models to given inputs;

and (5) modification of models in response to test
results. Second, we are designing a "Model Devel-

opment Record". The record will contain machine
readable documentation of the entire model develop-

ment process. To begin with, the record will describe

the goals the model is intended to fulfill. For example,
this might include a representation of the questions

the model is (and is not) intended to answer. The
record will also describe the sequence of candidate

models that were constructed in the course of devel-

oping the final model. For each candidate model, the

record might describe: (1) the equations encoded in

the model; (2) assumptions underlying the model; (3)

fitting techniques used to instantiate free parameters
of the model; and (4) tests against empirical data that

were performed on the model. The record must also

describe (5) the temporal sequence of candidate mod-

els as well as (6) logical dependencies between test
results on early models and modeling choices made

in constructing subsequent, more refined models.

219

Tools for checking applicability of scientific models

to new problems will rely heavily on the model de-

velopment record. Important applicability checks in-

clude: determining whether a proposed use of a model

is consistent with the goals the model was originally

intended to fulfill; determining if a new problem lies
within the range of inputs for which the model was

tested; and testing assumptions underlying the equa-

tions that were incorporated into the model. Each

of these checks requires access to various aspects of

the model development record. Likewise, tools that
support model revision will also rely heavily on the

model development record, hnportant types of model

revision include: extending/modifying the model to

handle a wider/different range of input parameters;

re-fitting free parameters of the model to new empir-
ical data; changing the assumptions used to model a

physical process; adding/deleting physical processes
to/from the model; and changing the overall purpose
of the model. A model revision tool should automati-

cally determine when a revision is needed (e.g., by de-

termining that a new problem falls outside the range
of problems handled by the original model, or by de-
tecting discrepancies between empirical data and out-

puts of the model). It should suggest changes to the
model that have the potential to cure the problem

(e.g., by reasoning about sensitivities of outputs with
respect to changes in intermediate results, or by rea-

soning about the effects of potential changes in as-

sumptions on the outputs of the model). Finally the

system should assist in re-validating the new model,

(e.g., by suggesting new tests of validity, and carrying

out and evaluating such tests.) In many cases, models
may be revised by "replaying" a portion of the devel-

opment record that led to the original model. Replay

will require access to logical dependencies among test

results and modeling choices found in the develop-
ment record, using techniques similar to derivational

analogy (Mostow 1989) and transformational imple-

mentation (Balzer 1985).

System Architecture

The overall architecture of our envisioned system is

shown in Figure 1. The model development toolbox

serves as a front end to the whole system. The tool-
box interacts with a human user to build an initial
model in some scientific domain. It also interacts with

a user in order to revise an existing model to handle a
new situation. Finally, the toolbox also includes facil-

ities for controlling the application of scientific mod-

els. As the toolbox guides the user through a series of

model building, testing and revision steps, it interacts

with several data bases. The model fragment data

base contains the basic building blocks of scientific
models. The toolbox uses techniques embodied in

_.__T_o °del

velopment

j Wor g I I
I M°d°l_ 1 I

_ Model Development Record

Model

Fragment

Data Base

Test

Data

Base

Figure 1: Model Development System Architecture

the SIGMA system to combine model fragments into

one or more "current working models". As working
models are constructed, they are tested against test

data drawn from a test data base. Likewise, as tests

are run, results are incorporated back into the test
data base. As the initial model development process
unfolds, the toolbox leaves a structured trace of the

process in the model development record. Later on,

the scientist will apply the model to specific problems

in which he is interested. As the model is applied to
each problem, the system consults the model develop-
ment record to determine whether the model is valid

for the current problem. If the model fails to ap-
ply, the scientist may use the toolbox to revise the

model. During the revision process, the toolbox is

also guided by the model development record. The

toolbox and record is being implemented as an exten-

sion to the SIGMA scientific model building system
(Keller & Rimon 1992). Testbed domains for this

research include planetary atmosphere modeling and

ecosystem modeling problems used in development
of SIGMA. Additional testbed domains include two

problems under investigation in computer-aided de-

sign research at Rutgers University: modeling of jet

engine nozzle performance and modeling the motion
of sailing yachts.

Controlled Application of Models

Implementation of the model development toolbox
and record is initially focusing on methods for control-

ling the application of scientific computation mod-

els. To this end, we have developed a collection

of techniques that prevent users from applying sci-
entific models to situations which violate their im-

plicit assumptions and lead to erroneous or mean-

ingless results. Some of these tests can be applied

to virtually any scientific model. Such generic test
include: (1) comparing inputs, outputs or intermedi-

22O

ateresultstofixedbounds;(2)verifyingexpectations
aboutmonotonicityor uni/multi-modalityof com-
putedfunctions;(3)validatingresultsin comparison
to simplifiedmodels.Wehavealsodefineda collec-
tion of morespecializedtests,whoserelevancede-
pendsonthespecificidealizations,approximationsor
abstractionsthat wereusedto constructthemodel.
Examplesinclude:(4) checkingnearnessto thefit-
tingpointofa linearapproximationand(5)verifying
self-consistencyofsolutionsobtainedbydecomposing
systemsofequations,amongothers.

Our applicabilitytestingtechniquesrequirethat
modelsbe representedin a mannerthat makesex-
plicitwhattestsarerequiredandhowthetestsshould
beapplied.Forthisreason,wehavedevelopedand
implementeda modelrepresentationlanguagethat
containsapplicabilitycheckinginformation.Ourrep-
resentationis an extensionof the dataflowgraphs
usedin SIGMA(Keller& Rimon1992).Therepre-
sentationincludesannotationsthatdescribewhatap-
plicabilitytestsshouldbecarriedoutatmodelexecu-
tiontime.Theannotationsarelinkedtothedataflow
graphsin amannerthat allowsthesystemto deter-
minethestageof thecomputationat whicheachap-
plicabilitytestshouldbecarriedout. Wehavealso
definedandimplementeda generalmodelexecution
procedurethat refersto theannotationsto perform
therequiredapplicabilitytestsduringthecourseof
modelexecution.Wehaveimplementedandtested
severalversionsof a jet enginenozzleperformance
modelanda yachtvelocitypredictionmodelin the
newrepresentationalongwithapplicabilitytestssuit-
ableto each.

An exampleof a scientificmodelrepresentedasa
dataflowgraphisshowninFigure2. Thisgraphrep-
resentsamodelforcomputingthesteadystateveloc-
ity ofasailingyachtasafunctionofseveralgeometric
andphysicalparametersof theyacht,(e.g.,vertical
centerofgravity(VCG),wettedsurfacearea(WSA),
longitudinalsecondmoment(LSM),effectivedraft
(T_ll)), aswellasinputsdescribingthesailingcon-
ditions,(wind-speed(Vtw)andheadingangle(Btw)).
Themodeldescribesacomputationthatproceedsin
twostages.Thefirst stageis to solvethetorquebal-
anceequationNetTorque(¢) = 0 which asserts that
"heeling" torques (causing the yacht to heel over in

the wind) are equal to "righting" torques {causing

the yacht to remain upright). The solution value of

¢ is the heel angle at which the yacht will sail. The

second stage is to solve the force balance equation

NetForce(v, ¢) = 0 which asserts that "thrust" (due
to the wind acting on the sails) is equal to "drag"

(due to the friction caused by water). The solution

value of v is the steady state velocity of the yacht.

The "Torque Balance" and "Force Balance" nodes

Inputs:

Torque Balance
(Phi)

Monotonic:(Vtw,>)
fV_,,>)

!

f......... t...........

iConsistency Test ,i
| I

...........-: iii.....
I I............ i

Force Balance (V)

Monotonic:(Vtw,.>)
O'hi,,:)

Bimodal:(Btw,>,<,>,<)

Figure 2: Yacht Velocity Model Datattow Graph

of this graph each describe submodels of the overall

yacht velocity prediction model. Each submodel is

itself represented by a dataflow graph that describes
a process of solving an equation using a numerical

root-finding algorithm (Brent's method). This yacht

velocity model is only an approximation of a more

accurate model of the yacht's motion. The more ac-

curate model solves for velocity v and heel angle ¢
simultaneously using a pair of coupled torque bal-

ance and force balance equations. The coupling is

due to the fact that NetTorque actually depends on

both ¢ and v, just as NetForce depends on ¢ and

v. The coupled model is generally more accurate;
however, it takes longer to run. It is also more brittle

than the uncoupled model since it uses a two-variable

equation solver (Newton-tLaphson) which more often

fails to find a root than the two one-variable (Brent)

equation solvers used in the uncoupled model.

The yacht model dataflow graph illustrates our ap-

proach to representing applicability tests as annota-

tions to dataflow graphs. Some types of tests are

general enough to apply to virtually any numerical

model of a physical system. Examples of this type

include testing whether a model exhibits a qualita-
tive behavior that can be described in terms of mono-

tonicity, unimodality or multimodality of the func-

tion computed by the model. These qualitative tests

are represented as special slots appearing in each

221

dataflownodeobject. Forexample,ill the "Mono-
tonicity" slot, an entryof the form (Input,Sign)

(where sign is one of {>, >, <, <} indicates that the
model's output is expected to be monotonic (increas-

ing, strictly increasing, decreasing, strictly decreas-

ing) in the named output. For example, the mono-
tonicity slot in the "Force-Balance" object includes

the entries (Vtw, >) asserting that the velocity output

v is expected to be a strictly increasing function of the

wind speed Vtw. Whenever a model is executed, the

execution procedure examines the monotonicity and
modality slots, extracts descriptors of the expected

qualitative behavior, and tests whether the current
execution of the model is consistent with that behav-

ior. The current execution is checked by examining

a database of results of previous model executions

and verifying that the current results bear the cor-
rect qualitative relationship to previous results.

Some types of tests are highly specialized, and ap-

ply only to a small number of models, perhaps only
one model. We represent these tests as special "ap-

plicability checking nodes" that are directly wired
into the dataflow graph. An example of this type

is the "Consistency Test" node in the yacht model

dataflow graph. The consistency test checks whether
the decoupling of the torque balance and force bal-

ance equations is a good or bad approximation. It

does so by evaluating the solution values of ¢ and v in

the inequality NetTorque(v, ¢) < K. This test mea-
sures whether the approximate solution brings the net

torque close enough to zero. By representing applica-

bility tests as additional nodes in a dataflow graph,
our system allows arbitrary computations to be used

for applicability tests.

Although applicability checking nodes are repre-
sented in the same manner as the main stream of the

computation, they are not handled in the same fash-

ion by our model execution procedure. To begin with,
applicability nodes are kept separate from ordinary

nodes. Under the control of the user, the system can

execute the entire graph, include applicability checks,

(running in "restricted mode") or the system can exe-
cute only the subgraph representing the main stream

of the computation (running in "unrestricted mode").

Furthermore, our execution procedure allows the ap-

plicability checking nodes to determine whether or
not execution should be aborted in the event of an

applicabilty failure. Outputs of applicability tests are

typically routed to a special "Enable" input of other

nodes. When an applicability test disables another

node in the graph, all computations downstream of
the test are aborted.

Initial tests of our system for controlling applica-
tion of models have demonstrated two types of ben-

efits. When provided with inputs that would previ-

ously have caused models to return erroneous results,

our system returns an error condition indicating that
the model is not applicable to the current input. The

system thus avoids misleading the user with erroneous

results. In addition, our system informs the user of

which applicability tests failed and thus makes him

aware of the reason the model does not apply to the

current input. In the future, we plan develop tools for

using such diagnostic information to support revision

of scientific models to change or extend their ranges
of applicability.

Summary

The model development toolbox and record is in-
tended to support a variety of activities that occur in

the course of developing scientific computation mod-
els. These activities include construction and test-

ing of new models; controlled application of models

to specific problems, and revision of models to han-

dle new situations. The system is also expected to
promote rapid development of new scientific compu-
tational models, more reliable use of scientific models

among computational scientists; wider sharing of sci-
entific models within communities of scientists; and

deeper understanding among scientists of the assump-

tions and modeling techniques incorporated in the
models they use. A more detailed description of this

research is found in (Ellman 1993).

Acknowledgments

The research presented in this document is supported
by NASA Grant NCC-2-802. It has also benefited

from discussions with Richard Keller, Saul Amarel,
Haym Hirsh, Lou Steinberg, Andrew Gelsey, 3ohn
Keane and Mark Schwabacher.

References

Balzer, R. 1985. A 15 year perspective on automatic

programming. IEEE Transactions on Software En-
gineering SF_,-11(11):1257-1268.

Ellman, T. 1993. A toolbox and record for scientific

model development. In Proceedings o/ the Sympo-
sium on Space Operations and Research.

Keller, R., and Pdmon, M. 1992. A knowledge-
based software development environment for scien-

tific model-building. In Proceedings of the Seventh

Knowledge-Based Software-Engineering Con/erence.

Mostow, J. 1989. Design by derivational analogy:

Issues in the automated replay of design plans. Ar-
tificial Intelligence 40:119 - 184.

222

